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Abstract

The combined effects of a thermal gradient and a dc electric field upon a
poorly conductihg fluid are used to induce steady cqnvection. A natural,
vertically-directed temperature gradient is used to establish an electrical
conductivity gradient over the rectangular cross-section of a liquid-filled
channel. Thén a static potential, which varies either linearly or periodically
along the channel, is imposed on electrodes that form the channel top. A simi-
lar potential, spatially shifted in the longitudinal (horizontal) direction, is
applied at the bottom of the channei. These electrodes mske physical and elec-
trical contact with the fluid, which typically has a mean electrical conductivity
of lo_lomhos/m. Because of the conductivity gradient, the vertical component
of the resulting electric field induces free charges in the bulk, and these
charges are then pulled in the horizontal direction by the longitudinal com-
ponent of the electric field. An analytical model is used to predict the dis-
tribution of potential, electric stress, and velocity.

It is assumed that effects of convection on the charge distribution can be
ignored (electric Reynolds number small). An experiment is described in which
the periodic potential distribution is closed on itself in a reéntrant channel
to achieve fully developed flow. Experiment and theory compare favorably with

discrepancies attributable largely to finite electric Reynolds number effects.



I. Introduction

Physical Phenomenon

Natural convection, as it obtains in fluids subject to the combina-
tion of thermal gradients and gravitational forces, is the basis for the
transport of heat and massl in practical situations that range from the
cooling of utilities transformer52 to atmospheric circulations3. Thus it
is the simple basic mechanism of the buoyancy force induced by a thermal
gradient that forms the theme for an area of fluid mechanicsh.

There is a similar class of electrohydrodynamic flows obtained by
applying both an electric field intensity E and a temperature gradient VT
to a fluid of slight electrical conductivity. In these cases, the buoyancy
force responsible for natural convection is augmented or even replaced by an
electro-thermally induced force density. The electric force density, which
5,6

is well known , 1s the consequence of a charge accumulation due to an

electrical current component having the same direction as the thermally
induced electrical conductivity gfadient. That is, the natural electrical
conductivity, o, is temperature-dependent in most liquids generally regarded
as electrical insulators (o < 10 °mhos/m). Thus, if there is a local grad-
ient in temperature induced by a thermal flux, there is an accompanying

gradient in 0, and a space charge density, q, given by

Q= VeeE = v(%:f-> - (g?i) Vo (1)

where it is assumed that thermally induced variations in the permittivity
are negligible in effect, that steady conditions prevail, and that the con-
duction current density J = oE dominates the convection current d; (caused

by the fluid velocity v) so that VeJ = 0.



As an example, suppose that the electric field intensity and conduc-
tivity gradient at a given point in the fluid were as shown in Fig. 1.
Then, the charge induced would be negative, and the electrical force dﬁ
would be in a direction opposite to E. As with natural convection, motions
in the direction of the thermal gradient tend to destroy both the thermal
and conductivity gradients. These motions are therefore at a rate limited
by the longest relaxation or diffusion time for maintaining the driving
gradients. Depending on the fluid properties and the particulars of the
configuration, the flow can be limited by a thermal time constant for main-
taining the temperature gradient in the face of the convection, or by an
electrical relaxation time required for the accumulation of space charge.

In contrast, convection perpendicular to the thermal and conductivity
gradients does not tend to destroy these gradients, and can therefore proceed
at g faster rate. For the example of Fig. 1, such motions would be in the
x (longitudinal) direction. The transverse field component Ey then serves
the purpose of creating the space charge, but also produces a force density
that must be balanced by hydrostatic pressure.

Two cases are developed in the following sections. In the first, an
electric field with both transverse and longitudinal components is produced
in the volume of a channel flow by imposing potential distributions on the
channel top and bottom that vary linearly with longitudinal distance. The
points of zero potential are displaced longitudinally, so that both of the
required components of E are present. Of course, there is only a limited
distance over which the potentials éan be practically made to vary linearly.
A second configuration obviates this difficulty by using spatially periodic

potential distributions, with that on the bottom shifted in phase with res-
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Fig. 1 The component of electric field intensity Ey in the direction of
the conductivity gradient Vo leads to the local accumulation of
space charge. The electrical force is in the direction of E, hence

has a component in the x direction.
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pect to that on the top. The fact that steady convection results can be
traced directly to the important fact that the space charge is induced by
the same field that is responsible for producing the force. Thus a reversal
of the field polarity also reverses the sign of the charge [Eq. (1)1, and
hence leaves the sign of the force unchanged.
Background

A study has illustrated the fact that a traveling wave of potential can
be used to induce convection perpendicular to the electrical conductivity

T

gradient produced by a temperature gradient. Although there are many simi-
larities between that interaction and the second case described here, there
are also essentigl differences. Here, the applied fields are static. This
means that the potential distributions must be imposed with electrodes that
make electrical contact with the fluid. Otherwise, there would be no con-
duction current from the external sources of potential to the fluid, and the
fluid would polarize in such a way as to exclude the electric field from the
bulk. In the traveling wave "induction interactions", the charges are induced
at one point in the fluid bulk at the expense of charges at another point; there
is no requirement for electrical contact with the fluid.

There is the important question of whether or not hydrostatic pressure
can he used to equilibrate the transverse force produced by the component E
used to induce the space charge. If it is assumed that the temperature pro-
file is natural, than gravitational buoyancy forces tend to stabilize the
profile. However, there remains the possibility of instability produced by
the transverse electrical forces. For such an instability, there is a thres-

hold which, for no longitudinal E} has been predicted and measured8’9. In the

following developments, it is assumed that the threshold for instability is



not exceeded, and in the periodic potential case where the transverse force
is not constant, that secondary convection from the transverse forces is not
of significance.
IT. ©Spatially Linear Potential
Configuration
A cross-sectional view of the plane flow configuration is shown in

Fig. 2. Electrodes at y = #% are constrained in potential ¢ such that
o(x,2) = Vylx=x)/% 5 @(x,-2) = V_x/2 (2)

These distributions are sketched in Fig. 2, together with the lines of con-
stant potential and electric field intensity found in Sec. IIB., The position
of zero potential on the upper electrodes is shifted with respect to that on
the lower electrodes by the distance X. Note from Eq. (1) that, if the con-
ductivity increases with depth, the transverse component of E'gives rise to
a negative bulk charge, and this conspires with the longitudinal component of
ﬁ; which is negative, to produce an electrical force density tending to propel
the fluid in the positive x direction.

Because the temperature variation only serves to create the conductivity
gradient, the thermal aspects of the problem are a secondary consideration.
In fact, any stratification mechanism that leads to the electrical conduc-

tivity profile
o = o, %t 0, ¥/ (3)

00 and 01 constants, would be described by the analytical model now derived.
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Fig. 2 Cross-sectional view of plane flow configuration with linesr po~-
tential distributions imposed on the channel bottom and top., Lineg
of constant potex;tiail‘ and electrie field intensity ere shown s &8
well as the induced space charge density. Yor the cgse shown, the

fluid is pumped to the right,



Potential Distribution
Under steady-state conditions, with the convection current ignored,

conservation of charge requires that

oV¥¢ + VooVe = O (k&)

where E = -V¢. The essentials of the interaction are retained if the first
coefficient in Eq. (4) is approximated by the mean conductivity, g, Then,

Eq. (4) becomes

3% , 430, 3%
dy2 ta oy e = O (5)

where o = 01/002.

The solution to Eq. (5) which satisfies boundary condiions (2) is

o | R () ©
mi % L 2 sinh ol
This potential distribution, and the implied electric field intensity, is
illustrated in Fig. 2.
Electrical Stress and Velocity Profiles
For plane Couette flow, v = vx(y)gg and there are no contributions to
the longitudinal force balance from pressure or inertia. Thus, the x-com-

ponent of the equation of motion equilibrates the electrical and viscous

force densities

d ) 9 d vy
§.fox+8y Txy'_—ay(u3y> (7)
1 , . .
where Tij = eEiEj -5 éij eEkEk and 11 is the viscosity. The Maxwell stress

component T _ is independent of x, so that Eq. (7) can be integrated twice

on y to give
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Note that the electrodes at y = *9 contact.the fluid physically, so that

Eq. (8) must satisfy the conditions vx(l) = vx(-l) = 0.

Although it is straightforward to tske account of the wvariation of
viscosity with depth, the complexity of the predictions obscure the physics
of interest, and M has been taken as a constant (the average) in the second
integration of Eq. (7). From Eq. (6), it follows that the electric shear

stress is
v x,. e"0Y
m o)
= E£F = - O] ] e
Txy ExEy <2 > 2 sinh af (9)

and hence the required velocity profile follows from Eqs. (8) and (9) as

2

€xo [y ¥y (e”®=cosh q4)
.o (Vn 10
v, ) o (z) et sinn OX (10)

For the case with o positive, so that the more insulating fluid is at
the bottom of the channel, the electrical force density BTxy/By and the
shear stress are seen from Eq. (9) to be the largest at the bottom. Thus,
the peak in velocity as given by Eq. (10) falls somewhat below the channel
midplane at y = -fn(sinh af/af)/a.

The nature of thermslly induced electroconvection in static electric
fields is illustrated by Eq. (10). The direction of flow is determined by
the spatial relationship of the imposed potentials (xo) and not by the sign
of the imposed potential V.

Note that the transverse force density implied by Eq. (6) is independ-
ent of the longitudinal position x, and is therefore balanced by the hydro-
static pressure. However, it is this force component that plays a part in

instability.
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ITI. Spatially Periodic Potential

Configuration

It is clear from the concluding remarks to Sec. IIC that the longitudi-
nal force density in the linear potential configuration of Fig. 2 remains
positive if the potential distributions are decreasing, rather than increasing,
functions of x. The shift X, determines the direction of flow.

A natural evolution of the linear potential distribution case, to obtain
a channel of arbitrary length, is sketched in Fig. 3a. The potential distri-
butions are now spatially periodic, with a phase difference of x = 8/k. Over
the ranges of x where the slopes of the imposed potential distributions are of
the same sign, the channel configuration is essentially the same as for the
linear distribution. Of course, there are now spatial variations in both com-
ponents of the force density. The flow response of the fluid to the electrical
stress averaged cover one wavelength is computed.
Potential Distribution

The potential distributions are approximated by the first Fourier compo-

nents, so that boundary conditions are

o (kx -8), Jkx

¢(x,2) = Re V_ 3 ¢(x,-2) = ReV_ e” (11)

To match these conditions, solutions are assumed of the form ¢ = Re ¢(y)exp(-jkx),

where it then follows from Eq. (5) that

D% + abg - K% = 0 3 D( )= a( )/ay (12)
It follows that ¢ «exp(py), where
o 2}
p =-% % B3 B=I[(e/2F+ K] (13)
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Fig. 3 Cross-sectional view of flow configuration with spatially periodic dis-
tribution of imposed potential. (a) Electrode potential distributions.
(b) Potential distribution in fluid bulk (o >> k). (e¢) Lines of
electric field intensity and induced space charge, showing regions that

contribute to a force density in the x direction.
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A linear combination of solutions, Eq. (13), that satisfies the

boundary conditions (11) is

A
A Ve 2 ‘je+%£' -%2.
¢ = Sion oL | © sinh B(2+y)+ e sinhB (2-y) (W)

A sketch of this potenﬁial distribution with © = W/2 used for the case a>> k
is shown in Fig. 3b, and Fig. 3¢ illustrates the implied lines of electric field
intensity and space charge. In regions where the potential slopes on the chan-
nel top and bottom are of like sign, the potential and field distributions have
the character of those for the linear distribution. In the intervening regions,
the fields tend to produce undesirable forces in the transverse and longitudinal
directions.
Electrical Stress and Velocity Distributions

Under the assumption of plane Couette flow, Eq. (7) is again appropriate.
It is assumed that the fluid responds to the electrical force averaged over
one wavelength. Thus, the first term in Eq. (7) makes no contribution, and
it is the spatially averaged value of shear stress <Txy? that is required in

the second term. To compute <Txy>- = <eExEy> , use is made of the identity

@e A eI Re B e IF%s = —é— Re A*B, and Eq. (14), to write
=1 A* Sy 2 -0y . .
<Txv> =5 Re(jked*D¢) = - eV Bk e ¥ sin 8/2 sinh 2B% (15)

With this result, Eq. (8) is integrated to obtain the velocity profile
2 . : -0y AR
v, = €kV_ Bsin & [cosh of - e V- (2)31nh of]/2ua sinh 282 (16)

The same attributes are apparent here as for the linear case, Eq. (10), except
that the phase shift now gives a largest positive velocity as © = m/2; the phase

shift illustrated in Fig. 3 and used in the experiment of Sec. IV, Note that
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the peak velocity is at the same position as for the linear case.

IV. Experiments

An apparatus for studying the electroconvective pumping is shown in
Fig. 4. Plexiglas channel walls support brass rods that both impose the
required periodic longitudinal variation in potential and constrain the
longitudinal velocity of the adjacent fluid to be essentially zero. The
liquid extends above the upper electrodes, where, at the beginning of a test,
the temperature is raised to Th. Because the time constant for conduction of
heat to the fluid at the bottom is long compared with the time required for
a test run, no heat sink is required to maintain the temperature Tc in the
region of fluid below the bottom electrodes.

Experiments, conducted by using a linear potential distribution imposed
essentially as described in Sec. II, result in velocities thgt are in reason-
able agreement with the prediction of Eq. (10)10. For these tests, the elec-
trodes are placed only in a section of the reentrant channel which has a length
of 15 em. As a result, the conditions of fully developed flow in the inter-
action region are not met; moreover, the pressure drop due to the return cir-
culation of the fluid is not accounted for by the theory.

The imposition of an integral number of wavelengths of a periodic poten-
tial on electrodes that extend over the circumferential length of the channel
makesit possible to maintain control over the flow conditions. The circum-
stances predicated in Sec. III. are then more closely approximated. Hence,
only data found for the spatially periodic case are presented here.

Physical paremeters for the experiments are summarized in Table I and
Fig. 4. The velocity, which for the experimental conditions has its peak value
essentially at the channel center, ig measured by injecting a small amount of

the working fluid (corn oil) with dye added. This is done in such a way that

the electrical and thermal profiles are not altered appreciably. In any case,
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Fig. 4 Reéntrant channel for studying flow induced by spatially periodic poten-
tials, showing side and end views of channel. The mean length of the
channel is 2.43 m, so that there are nine wavelengths of potential

imposed on the electrodes. The channel is shown without the voltage

divider and connecting wiring for electrodes.
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the use of the dye marker and a stop watch for velocity measurements involves
only a wavelength or so of the nine wavelengths. Because each wavelength is
in flow series with the next, local disturbances tend to be smoothed out.

_All measurements are taken with the phase shift for maximum velocity;
® = 7/2. The voltage VP is the pesk potential of the sawtooth potential dis-
tribution sketched in Fig. 3a and imposed on the channel electrodes with voltage
dividers. 1In the theoretical model, the first Fourier component of this distri-
bution is used, with a peak potential Vo = 0.85 V_. Then, according to Eq.

(16), a normalized velocity at the channel center is

- o _sinh 282 _ Ek 2
Vs T vx(O) 28(cosh af -1) ~ ﬂﬂlo'Yg Vo (17)

Note that Ve is the velocity normalized so that experiments which differ in
conductivity profile, but have the same mean viscosity, should have the same
dependence on V_.

Experimental measurements, together with the prediction provided by Eq.
(17) are shown in Fig. 5. It must be recognized that variations in the vis-
cosity across the channel have been ignored, and that the electrical conduc-
tivity is not an entirely stable fluid parameter, even for corn oil, a fluid
chosen for its relative stability. %Thus, the quantitative disagreement between
the theoretical model and measurements represented by Fig. 5 is consistent

with uncertainties in the physical parameters used in Eq. (17).

V. Concluding Remarks

The intention of this work is to demonstrate quantitatively, in as
simple a manner possible, the class of electrohydrodynsmic flows found as

slightly conducting fluids are simultaneously stressed by constant electric
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Fig.ys Mean velocity at channel center for three trials. Vg is defined in terms
of vx(o) by Eq. (17). For trials nos. 1 and 3, the actual velocity
in cm/sec. is 0.099 Vo while for trial No. 2 it is 0.13 vy Vp is the

peak voltage of the sawtooth waveform.
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fields and s thermal flux. As with natural convection, these flows become
considerably more complicated to describe if there is & coupling between the
convection and either the thermal or the electrical gradients that drive the
convection. For the flows transverse to the thermal gradient discussed here,
the thermal gradient is left undisturbed by the convection. However, in the
case of the periodic potential distribution, the electrical relaxation pro-
cess does enter as a limitation on the flow rate. The electric Reynolds number
is a measure of the error committed in Eg. (4) by ignoring the electric convec-
tion current density, ;d. Note that, with the constant coefficient approxima-
tion, the first term in Eq. (&) is Ooq/E, and it is clear that the convection

current contribution can be ignored, if

|00q/e| >> |vevq| (18)

This inequality requires that the electric Reynolds number Re = evxk/c be
small compared with unity. The experiments reported in Sec. IV satisfy this
condition, with Re at most 0.25.

It is clear that further studies are called for to explore the conse-
quences of finite thermal diffusion and electrical relaxation processes. These
processes, along with instabilities connected with both the static equilibrium
and the shear flow, are the primary limitations on the breadth of practical

applications for this class of flows.
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Trial 'I'h ‘I‘c Uo 01
(°c) (°c) (mho/m) (mho/m)
1 53 37 1.06 x 10" |o.24 x 107"°
2 60 38 1.21 x 107'° {0.37 x 107*°
3 55 37 1.08 x 10~'° | 0.25 x 107'°
1
‘ .
£ = 3.1 €, A = 2n/k =0.2Tm
U= 2.25 X lo_zkg/m-sec. £ = 1.9 em

Table T. Physical parameters and gpparatus dimensions for trial

runs of Fig. 5.



